


| Date Planned ://             | Daily Tutorial Sheet-13 | Expected Duration : 90 Min |
|------------------------------|-------------------------|----------------------------|
| Actual Date of Attempt : / / | Level-3                 | Exact Duration :           |

\*147. Degree of hydrolysis for a salt of strong acid and weak base is:



- (A) independent of dilution
- (B) increases with dilution
- (C) increases with decrease in  $K_b$  of the base
- **(D)** decreases with decrease in temperature
- \*148. A solution containing a mixture of 0.05 M NaCl and 0.05 M NaI is taken. ( $K_{sp}$  of AgCl =  $10^{-10}$  and  $K_{sp}$  of

AgI =  $4 \times 10^{-16}$ ). When AgNO $_3$  is added to such a solution:



- (A) the concentration of  $Ag^+$  required to precipitate  $Cl^-$  is  $2 \times 10^{-9}$  mol/L
- **(B)** the concentration of  $Ag^+$  required to precipitate  $I^-$  is  $8 \times 10^{-15}$  mol/L
- (C) AgCl and AgI will precipitate together
- (D) first AgI will be precipitated

## Paragraph for Question No. 149 - 152



In qualitative analysis, cations of group II as well as group IV are precipitated in the form of sulphides. Due to low value of  $K_{sp}$  of group II sulphides, group reagent is  $H_2S$  in presence of dil. HCl and due to high value of  $K_{sp}$  of group IV sulphides, group reagent is  $H_2S$  in presence of  $NH_4OH$  and  $NH_4Cl$ .

In a  $0.1M~H_2S$  solution,  $Sn^{2+}$ ,  $Cd^{2+}$  and  $Ni^{2+}$  ions are present in equimolar concentration (0.1M).

Given:

$$K_{a_1}(H_2S) = 10^{-7}, K_{a_2}(H_2S) = 10^{-14}$$
  
 $K_{sp}(SnS) = 8 \times 10^{-29}, K_{sp}(CdS) = 10^{-28}$   
 $K_{sp}(NiS) = 3 \times 10^{-21}$ 

- **149.** If HCl solution is passed slowly then which sulphide will precipitate first :
  - (A) SnS
- (B) CdS
- (C) NiS
- **(D)** none of these

**150.** At what pH, precipitate of NiS will form:



- **(A)** 12.76
- (B)
- **(C)** 1.24
- **(D)** 4
- **151.** Which of the following sulphide is more soluble in pure water:
  - (A) CdS

(B) NiS

(C) SnS

- **(D)** all have equal solubility
- **152.** If 0.1M HCl is mixed in the solution containing only 0.1 M  $H_2S$  and saturated with  $H_2S$ , then what will be the concentration of  $Cd^{2\oplus}$  ions?
  - **(A)**  $10^{-8}$

**(B)** 10<sup>-9</sup>

(C)  $5.6 \times 10^{-7}$ 

**(D)**  $5.6 \times 10^{-9}$